Connect 4 Robot

ME 4451 Final Project Report
Fall 2017

Dr. Nader Sadegh and Dr. Wayne Book

Mukul Bhatt, Edoardo Dioni, Naud Ghebre, Nathaniel Stowe
December 5, 2017

Table of Contents

1. OBJECTIVE

2. DESIGN AND IMPLEMENTATION
2.1 DESIGN
2.2 VISION
2.3 PATH PLANNING/KINEMATICS
2.4 PHYSICAL INTERFACES
2.5 AI ALGORITHM IMPLEMENTATION
2.6 ANIMATED EXPRESSIONS and SOUNDS
2.7 GENERAL PROGRAM FLOW (IMAGE FILTERING & TIMING)

3. RESULTS AND DISCUSSIONS
4. LEARNING EXPERIENCES

APPENDIX
References:
End Effector Brainstorming Sketches Photos
Broken Tool Interface Part
Gripper Housing Design, Initial design
Images for Section 2.5
Images for Section 2.6
Code:

14

16
16
17
19
20
21
23
25

1. OBJECTIVE

Design an Al player that can utilize the Epson C3 Robot to play Connect 4 against a human
opponent.

2. DESIGN AND IMPLEMENTATION

2.1 DESIGN

The setup includes a camera that has eyes on the board at all times and detects when a move has
been made by the opponent (human player). The robot then uses an algorithm to determine the
optimal location to place its chip. The robot picks up its chip using a gripper end effector, place
the chip in the desired column and then release it there. The end effector locations are provided
for where to pick up the chip and where to place the chip.

2.2 VISION

The vision algorithm works through color thresholding. Assuming the background is uniform,
only blue, red and yellow were filtered using the MATLAB app Color thresholding.
1. Board
By filtering the blue of the board, it is possible to obtain a binary image, in which a
rectangular geometry can be detected. Straight lines were detected using Hough
transform, which implements the Standard Hough Transform (SHT). The Hough
transform is designed to detect lines, using the parametric representation of a line:
p =x* cos(0) +y * sin(0)

The variable rho is the distance from the origin to the line along a vector perpendicular
to the line. Theta is the angle between the x-axis and this vector. The hough function
generates a parameter space matrix whose rows and columns correspond to these rho and
theta values, respectively. The houghpeaks function was used to find peak values in the
parameter space. These peaks represent potential lines in the input image. The best four
lines were then selected assuming all the lines can have a 0 value around + 90° or 0° and
assuming that p for each line is unique.

Then intersections were computed in order to obtain the edges coordinates (red circles).
This resulted in four segments, the two vertical lines were divided by the number of rows
of the board (six rows) and the horizontal ones were divided by the number of columns of
the board (seven columns). Connecting the corresponding points of the horizontal and
vertical lines, led to the grid design. The intersection of these ideal lines is important.
These points are highlighted in pink in the following image.

Figure 2.2-1: Blue mask output and edge detection.

These points are stored in a 7x6x2 matrix. Because of this structure, it was possible to
relate the chip coordinates in the image with their actual position in the board.

2. Chips

Figure 2.2-2: Red and yellow masks output and chip detection.
Red and yellow were detected by applying two color filtering masks. The two masks
were generated and analyzed separately. Utilizing MATLAB function regionprops, the
area and the center of mass for each blob in the binary picture were determined. The area
was used as a filter in order to get rid of some smaller spots that appeared in the mask.
The chip area is known to be much bigger than noise and therefore this criteria was used

as a threshold level. In addition all the spots with center of mass, outside the board area
were discarded.

In order to detect in which row and column a chip was placed, the center of mass
coordinates were compared with the coordinates of the points in the pink grid (figure
2.2-1) as mentioned before. Each chip has a center of mass, which will have x coordinate
larger than the grid points coordinates in all the columns prior, and y coordinate larger
than the grid points in all the row prior.

. Output

Vision algorithm provided an image from the camera with all the lines and points
detected in superposition, so that it was possible to see, in real time, what the algorithm
was detecting.

Figure 2.2-3: Final interface.

The output from the algorithm was a 6x7 matrix where each entry represented a slot. A
“0” meant it was empty. A “1” meant it had been filled with a red chip and a “2” with a
yellow chip.

At this point the algorithm did not check if the output is realistic, physically possible or
consistent with the previous states (this was done by the game algorithm).

2.3 PATH PLANNING/KINEMATICS

Displacement kinematics and path planning was employed for the Connect 4 Bot to carry out
each of its plays.

The displacement kinematics considerations for the Connect 4 Bot was centered around
configurations for the Epson arm that would allow the end effector to start in some start/home
position (one that would be away from the board, opponent, and field of play for safety reasons),
pick up a chip from the chip dispenser, and drop the chip in appropriate column. Some
considerations that were taken included exploring the Configuration Space to determine joint
angles that would not interfere/collide with any of the field objects over its’ trajectories. Lastly,
trial and error runs over the Coordinate Space allowed for determination of accurate locations for
each of the columns and the next chip from the chip dispenser, as shown out in Figure 2.3-1. For
this, three main path routines were identified within the code: Pick up Routine, Drop Chip
Routine, and Return To Home Routine. Points in space were determined and the reverse
kinematics for the arm’s movements were calculated by the Epson. In the Pick Up Routine, 7
points were identified via manual manipulation of the Epson arm to define the trajectory that
would allow the end effector to travel from the start position to the chip dispenser, grip the chip
and wait above the Connect 4 board. When this routine reached the appropriate point in its
trajectory, the program would send a servo command to close the end effector gripper. 3 Points
were identified to define the trajectory from above the
board to the correct column (from 1 to 7) as instructed by
the Connect 4 Al player. When the appropriate column
was reached by the end effector, a servo command
instructs the gripper to release the chip.The last routine
of a play is the Return to Home Routine, which is
defined by two points that instruct the arm to return to
the start position behind the board and field of play.

The velocity trajection was controlled by the Epson’s
acceleration limited capabilities. Forty percent of the
arm’s max speed and twenty percent of max acceleration
was used to make sure the Connect 4 Bot makes timely
moves, while not posing a risk to the player and

damaging the field of play. Tuning these parameters
reduced wait time and provided seamless execution of its

plays.

Figure 2.3-1: Points of interest 1o send o Epson arm

2.4 PHYSICAL INTERFACES
GRIPPER (End Effector):

Gear Restraint Interface

A

Figure 2.4-2: Robot Gripper, View 2

In order for the Epson Robot to play Connect 4, it needed an end effector with a mechanism to
physically interface with the chip.

Several gripping mechanisms were brainstormed. These included: adhesive-based gripper,
“spatula” gripper, vacuum gripper, angular finger gripper, parallel finger gripper. The
Adhesive-based and “spatula” gripper were considered as they were the easiest to implement
when picking up the chips. However, neither of these methods were chosen due to a lack of
precision and repeatability that was necessary to place the chips inside the small slot of the
Connect 4 gameboard. The parallel gripper design offered the benefit of ensuring motion of the
fingers perpendicular to the chip when the gripper was open and closed allowing for high
precision when dropping a chip. However, this design was not chosen due to the complexity of
the design versus the application. The angular gripper design was chosen since it offered the
best balance between precision, repeatability, and necessary complexity-to-application ratio.
(For the Brainstorming sketches see the Appendix.)

The design of the angular gripper was started using the interfaces necessary. The main aspects
that were required were connection with the Epson tool interface and the chip. For the tool
interface a four part assembly for the housing was utilized in order to facilitate assembly and
installation of the gripper onto the Epson. The tool interface (Figures 2.4-1, 2.4-2, and 2.4-3) was
designed as a separate piece from the housing for ease of installation. The bolts could be
mounted into this piece and the mating bolt holes on the Epson, then the rest of the housing
could be slid onto this part with shims in order to prevent movement.

Figure 2.4-3 Tool Interface (top and bottom views)

The housing had a built in servo holder, that the servo can slide into for assembly. A servo
restraint wall (Figure 2.4-1) was added in order to hold the servo in place. The final part of the
housing was the gear restraint interface, which slid onto the dowel pins once the gears and
fingers were installed, to prevent undesired gear motion. There was an initial housing design
used that was redesigned due to the servo restraints not having a sturdy connection to provide
enough reaction forces to hold the servo in place. The previous design can be seen in the
Appendix.

The housing, tool interface, fingers, and gear restraint were designed by the group and 3-D
printed. The gears were designed by the group using an online gear profile generator and then
laser cut.

Chip Dispenser

In order for the gripper to grab a chip in a manner that it could drop it into the Connect 4 board,
the chip needed to oriented vertically. In order to provide chips in the necessary orientation, a
chip dispenser was designed to constantly keep one chip ready in a particular position for the
gripper to pick.

The chip dispenser was designed and 3-D printed by the group (See Figure 2.4-4).

-

Figure 2.4-4: Chip Dispenser

2.5 AT ALGORITHM IMPLEMENTATION

The algorithm employed in the Connect 4 Bot implementation is loosely based upon the popular
minimax algorithm. The minimax algorithm essentially evaluates a simulated game for each of
the available play positions and determines the optimal play position based on the evaluation of
each possible consecutive play. The complexity of the minimax algorithm is based upon a
characteristic game parameter known as depth. The depth parameter controls the level of search
when determining the optimal play position. For example, a depth of 2, simulates the game for
each available play position for both the human play and the robot for two game plays. Such an
operation is shown in Figure 2.5-1 (see Appendix) for the implementation of minimax in a
reduced complexity game like tic-tac-toe. The depth parameter exponentially increases the
number of computations and decision trees. For this reason, the traditional minimax algorithm,
though extremely effective, is often used with a low search depth to balance gameplay
intelligence and number of computations. In an attempt to resolve some of the issues with the
minimax algorithm, a simpler method of recursion was employed to reduce computation heft and
provide sufficient intelligence to beat most human connect 4 players. The connect 4 algorithm
implemented in the project is based upon a simple heuristic of chip density and utilizes 3 main
methods.

The first function named testAlgorithm is designed to impulsively decide where the robot should
play based upon the relative occurrence of the robot’s play chip. Each consecutive chip in a row,
column, or diagonal is counted with a value of 1. When a winning configuration is anticipated
through the simulated play at a given available play position, a value of 999 is used for the
position’s point score for the player and a value of 1000 is awarded for the robot’s winning
position score. In this way, the algorithm prioritizes a win by the robot over a player win. This
simple heuristic alone, is insufficient to beat the most novice player of Connect 4 and also
reveals an underlying flaw to the full implementation overall. The underlying flaw in this
heuristic is that certain play positions are often evaluated as being optimal when they do not
advance the robot to a position that can lead to a feasible win.

For example, Figure 2.5-2 (see Appendix) shows that using the testAlgorithm function, the most
optimal play position is on row 5, column 1. In reality, this play position is not a worthwhile
play, because a winning configuration is unlikely to occur as one of the diagonals is already
limited by the corner restriction of the connect 4 board. It would be far more advantageous to
play elsewhere to maximize the opportunity to develop row, column, or diagonal winning
configurations. To enhance the capability of the first heuristic, the function also employs a
simple comparative analysis. For each available play position, a point matrix is updated with a
new value for the point density of player chips and robot chips. Once all of the available

positions have been evaluated. The optimal play position is determined based upon the best play
for the player and for the robot. If the point evaluation for the player’s best play position is
higher than that of the robot, the algorithm will recommend the robot to play in the position that
yields the highest point density for the player. In other words, the algorithm recommends a
block/defensive strategy. Likewise if the robot’s best play position is higher than that of the
player, the algorithm will recommend the robot’s best play position. In other words, the
algorithm recommends an attack/offensive strategy. The case where the optimal play positions
for each player have the same point evaluation, the algorithm always works to advance the robot.

The second function named testAlgorithm2, enhances the algorithm by increasing the predictive
capability of the system. This function uses the first function to simulate the optimal play
positions for the user and the robot using the point density heuristic. The testAlgorithm?2 function
evaluates each available play position and simulates an entire game to completion. Because the
function is based upon the heuristic of point density, the player and robot positions are assumed
throughout the game tree. The distinction between the minimax algorithm and this
implementation is more clearly shown in terms of number of iterations. The implementation used
here is linear in its operation scope whereas the minimax algorithm is exponential. The point
density heuristic essentially limits the algorithm to only one uniquely defined game simulation
for each available play position. As a result, the decision tree can be thought of as having a
maximum of 8 completely separate branches. This is opposed to the minimax algorithm where
each play (or joint) has a separate branch composed of joints that form other branches.

Figure 2.5-3 (see Appendix) attempts to highlight the distinction between the two approaches.
Both figures simply demonstrate the trend that each algorithm follows. Ultimately, the number of
joints is dependent upon the number of empty board positions for the minimax algorithm. As
stated before, because of the exponential growth of the minimax computations, the depth
parameter limits the number of considered possibilities. The number of joints using the
implemented algorithm is based upon the number of plays left in the game until completion.
Completion is defined as a win, loss, or game tie. The testAlgorithm2 function uses a
determination of positive and negative life cycles to provide a play recommendation. These life
cycles correspond with the number of iterations that occur before game completion. A positive
life cycle is defined as the number of iterations before a given play position is simulated to result
in a win for the robot. A negative life cycle is defined as the number of iterations before a given
play position is simulated to result in a tie or loss for the robot. Positive and negative life cycles
are represented as positive and negative integers respectively.

The objective here is to utilize this higher order heuristic to determine the optimal play position.
The goal of the testAlgorithm?2 function is to select a play position that prioritizes a robot win in
as few iterations as possible whilst maximizing the game duration in the case that the robot

10

cannot win. This translates to prioritizing play positions with the minimum number of positive
life cycles and maximum number of negative life cycles. The third function named
testAlgorithm3 utilizes the second function to simulate the consecutive play positions of the user
and robot for each available play position. This function uses the same high level heuristic of life
cycles and increases the predictive capability of the system. When the gaming implementation is
based on this function, the robot will often avoid at all cost losing positions and plays with good
intelligence overall while still minimizing the number of iterations.

2.6 ANIMATED EXPRESSIONS and SOUNDS

The animated expressions used in the connect 4 implementation attempt to explore the areas of
social robotics and human psychology. The animated expressions are creations of Cezek, Dusan,
and Nikola Markovic [3]. The robotic face oscillates between 11 unique faces. The face that is
shown during gameplay is dependent on a game state evaluation. The evaluation is determined
through the use of an emotion score. The developed emotion score parameter is used to detail the
degree to which the robot is winning or losing. Figure 2.6-1 (see Appendix) demonstrates the
varying emotions associated with each emotion score. Figure 2.6-2 (see Appendix) shows the
displayed face when dynamic lighting conditions cause vision processing instability. The
objective here is to develop a dynamic evaluation of robot emotion that conforms to the
expectation of the user as the game develops. The functionality of the animated expressions
during live gameplay is often limited due to the fact that the connect 4 algorithm often prevents
the expression function from reaching the extremities of negative emotion. The evaluation of the
emotion score is based on a conversion of the maximum number of consecutive chips for each
available play position. The emotion score conversion based on this evaluation is as shown in
Table 2 (see Appendix). The advantage of such a conversion is shown when the scores for each
available play position are summed. For example, an emotion score of 2020 is clearly recognized
as a game state where a given player is bound to win in one of two distinct winning combinations
and two other available play positions where there are two consecutive chips. The emotion
function is called after each play. Thus, the robot tends towards negative emotion after a user
play and towards positive emotion after a play by the Al

Experimentally, the childlike animated expressions invoke an association of gentleness and joy
to users. This smooths the machine human interface during gameplay. Most individuals
interacting with the machine are smiling though their entire interaction is with inanimate objects.
To complement the human machine interface, the emotion function plays humourous music and
displays the associated emotion based on emotion score ranges. For emotion scores between 777
and 1777, a warning sound is played to recognize the potential win by the user. For emotion
scores above 1777, the Al emotes extremely positively or negatively. This is due to the fact that
emotion scores above this critical threshold of 1777, imply the robot is headed for an imminent

11

win or loss by the next play. In the case of an imminent robot win, the unsuspecting player is
greeted by randomized tunes that playfully mock the user. This randomization decreases
predictability and gives each user a personal experience. Upon a robot win, the user is presented
by a standard winning song. In the case of an imminent robot loss, the player is greeted by tunes
of sadness expressed by the robot. When the robot losses, the animated face emotes extremely
negatively and the program plays a tune of defeat. The recurring value of seven is a direct
consequence of the number of columns in a standard game board. It is likely the case that
without such human-like details, the abrupt motions of the Epson C3 robot along with the
intelligence of the Al and its emotions would invoke a sense of fear in users.

2.7 GENERAL PROGRAM FLOW (IMAGE FILTERING & TIMING)

With all of the major components of this system fleshed out above, the interfacing between the
components are described here to portray the entire program flow.

User play User or Robot Robot play
first play?

Wait for user
input

Commence tie
sequence

- =

Detect the game state
matrix

Commence win
sequence

| Return game state matrix |
|
|

Determine optimal play - -
position Return measure of game = Display associated

i i
progress animated expression

‘ Commence chip acquisition kinematic ‘
sequence

Commence lose
sequence

Commence associated column kinematic

sequence

Wait for user
input

Figure 2.7-1: Programming Flowchart

Figure 2.7-1 above shows a more in depth look at the program flow. The entire game is run on a
main while loop that continually checks whether the game is over. The program first acquires a

12

new game board state as determined by the VISION component. There are checks made to
determine whether the updated board change is valid, including whether the human player placed
the correct chip in. The vision system is error prone due to noise and lighting in the lab, so
obvious changes that do not make sense are discarded. For instance, flltering techniques got rid
of blobs that were either not in the board region or detected in between valid chip positions on
the board. Another example, if the board matrix returned to the game loop shows an empty play
position in between two player chips in a vertical column, the matrix is discarded and the
program waits for the next loop to acquire another game state. Next, the updated internal matrix
is passed into the Al ALGORITHM component, which is responsible for determining the
Connect4 Bot’s next move. After the column for play is determined, the internal matrix is
updated and a dropChip routine is called, which is responsible for sending to the Epson the
correct points in space for the column, as determined by the PATH PLANNING/KINEMATICS
component. The points sent to the Epson are executed one by one until a chip is in the intended
column and the arm is back at the home state. The program then reenters the next loop.

An issue that was encountered during the interfacing between the different components was in
making sure the servo commands being sent to open and close the gripper were being executed at
the right time. Often times the command would get sent and be executed a lot sooner than
expected, since the commands are sent and queued at the Epson, instead of being executed in real
time, instruction by instruction. The approach taken to get around this was to implement time
delays between the moment servo commands are sent and the moment they’d be executed.
Despite it not being the most elegant solution, it was viable given the repeatability of the system
and how precise and accurate the Epson robot is.

3. RESULTS AND DISCUSSIONS

During the project presentation, the machine performed well. There were two instances where
the robot missed chip placement in the appropriate column (see Section 4 Learning Experiences
for discussion on accuracy) and one instance where the program did not exit properly after a user
win condition. Though this was the case, the machine was robust enough to allow for such minor
issues without propagating error throughout all aspects of the machine. The game state based
progression of the game worked flawlessly and responded according to the dynamic user play
wait periods. The vision system worked well under the changing lighting conditions due to
crowd shadow movements around the vision system’s primary lighting source, however, a
background was necessary in order to guarantee an optimal performance of the algorithm. The
kinematic elements of the robot performed well to swiftly obtain a chip with limited jerk and
minimal system vibration. Overall, the system performed well and according to expectation.

13

Alternative Designs for Robustness

Some alternative designs that were considered but not implemented include using a vacuum end
effector to grip the chips. The reason for this consideration was to simulate an actual Connect 4
game between players, where a chip dispenser is not available, thus the chips would be laying
flat on the table. With the use of another camera that has eyes on the table and chips sprawled
about, a more robust design would allow the Epson arm to detect its own chips and pick it up
from anywhere to make its next move.

4. LEARNING EXPERIENCES

End Effector

During the build and design process, there were several lessons that the group learned. The first
area was manufacturing and design tolerances. The end effector gears were designed for tight
tolerance in gear mesh including their location with respect to each other on the housing.
However, due to the manufacturing tolerance of the laser cutter with which the gears were built,
there was additional spacing between gear teeth in the final product. This did not seem to be an
issue as the gears still mated together well. However, when utilizing the gripper, it was noticed
that the additional gear space led to increased backlash in the gears reducing the repeatability and
accuracy of the mechanism. If this was redesigned, the gear teeth and their pitch diameter would
be designed such that the thickness of the laser would be taken into account in the part’s GD&T.

To compensate for unknown situations with how the gripper will grip the chip every time,
compliance was added to the fingers using foam padding. A thick foam was utilized to have
large compliance. However, when testing the robot and gripper, it was discovered that the larger
compliance resulted in reduced accuracy when dropping the chip into the Connect 4 slots. For
future redesign, smaller foam padding should be utilized

During the first move of the Epson with the end effect, the end effector broke (see Appendix for
picture) because it collided with the wall. The tool interface part broke however, the end effector
remained unharmed. It was discovered that having a 2 part assembly with the end effector was a
good design model as it allowed for a weaker part to sustain the damage and thus allow the more
critical pieces and the Epson robot to not undergo damage in case of collision with the
environment.

14

Machine Vision

Once the vision algorithm had been tested for the first time, it was evident that an image from a
camera was much different from a static image. Lighting conditions and reflections were causing
a challenge. Color thresholding in fact was strictly related to external conditions and needed to
be recalibrated every day or even many times per day. A solution to this problem was the tuning
of the camera input. Through a preliminary filtering of the input image, it has been possible to
obtain a bright and clean image, much less related to the temporary conditions. For future
implementation, a specific light source would be utilized to light up the game board, in order to
reduce the effect of ambient lighting conditions on the vision system.

Algorithm

During testing of the robot, the algorithm performed with reasonable gaming intelligence.
Though this was the case, the robot was not situationally intelligent. As a result, the algorithm
implementation was only moderately robust. A situationally intelligent machine would be
sufficiently robust to correct itself for error. For example, during testing the chips would
sometimes miss the identified column by the Al In such cases, a situationally aware robot
should re-attempt to place a chip in the correct column and proceed only after its success. The
general flow of the current program only proceeds once the game state matches that of the AI’s
internal representation. In this way, after a chip miss, human intervention is necessary to
progress the game. Another way in which the algorithm can become more situationally aware is
to keep track of the number of chips used throughout the game and prompt the user to reload the
chip dispenser at the appropriate time. A more situationally aware algorithm would also be able
to detect if the chip dispenser is depleted and halt any kinematic execution if the board is being
modified.

15

APPENDIX

Contents:

References

End Effector Brainstorming Sketches
Damaged End Effector Tool Interface Part
Gripper Housing Design, Initial design
Images for Section 2.5

Images for Section 2.6

Code

References:

[1] “Connect Four Artificial Intelligence (AI).” Assignment A4: Connect Four Al,
www.cs.cornell.edu/courses/cs2110/2014sp/assignments/a4/A4ConnectFour.pdf.

[2] “Time Complexity.” Cs.odu.edu,
www.cs.odu.edu/~toida/nerzic/390teched/computability/complexity.html.

[3] Cezek, Dusan, and Nikola Markovic. “How to Build You Own Robot.” Behance, 2011,
www.behance.net/gallery/2966457/How-to-build-you-own-robot.

16

End Effector Brainstorming Sketches Photos

ADHEST VC
nEeess e -

[oM<

s« TAPE WILL
lea.J-a‘

e not prstebl
10 plecise

B erw’ SToe m

TArC O
(oRNETT TO CHIP

Lose adhesna D/EC

VWil peod o whe & devie
o "drsconne et " (""P fer

4 “pe Yo ds

EQ:‘.\

\
-r_’ﬁsJ T rn«roi

~p fle ch‘f

C mert

—_—
(1% g r
\SPH'TUL-A" /S<co2 &
¢ L2se 9P
I f\?ﬂ\ = - - ':;,"9'-‘00 enr L ({GJ-‘(
=7 2'%/ e S
- v
; O f el S K
s ’ —.. . —Cagy = if"{o,j(nr-f_“hf-
I ~-0®P/
eneffcdor _PeT AS ComP LTACT
— Wil pee d >‘ﬂ.,-f9ff’t¢: L
@_J'.O-’-”L(; (L\P \‘C}\“_»‘.."""" c€_
O MOV wWhep eogpire
plece

17

paRALLEL [TRMsLATTOR FIPe &R 6 RrPPE R
!/ \mu!-g;rwﬁ

Jﬂ f‘-"‘br

3 — ﬁr\ 8"8 H\‘dﬁ
L:l ﬁarf. o~ ‘G\f'ir‘*c'b.‘-—
P\CIMP ')Oir\"‘ ("
evd e e choc

Eeos
—pwre (S pshafior methva WRT oip ks
Atppi chip preise,
—_ (L?{ﬁ’h’&blc.

CoVs
= Olppf'lc‘,sh'ar V= C*r.pf(zt;ﬁ e fiom s not+ goad

- (rple prpdete J['UU-nMrf'j gr.ppf(1 UM Yy R~ ch .'p qpp/r&.hé o
= QO‘{‘JC tf](lb{)(r rf"'hu\fg Ol sl ':f:ij,,. C"ﬂ”'pl \!r(. .
———F —

ANOULAR G QR TPPER

/I'\!h-é"f)

5”""(5‘(~

B TS erJe
P/\rf"b(f/f 5
et
res
- prerse

— (L adap le
- o2 bwid cinplnsty Vs opeitled duign

¢
tetie wedts A W-H r(ﬁb\d:"(_d Lordrof bé’om
(owppier o oper /ey

18

Broken Tool Interface Part

This piece was damaged during the first move of the epson when the End effector was installed. There
was a collision of the end effector with the wall, causing this part to fail at the bolts connecting to the
Epson. See Learning Experiences section for details.

19

Gripper Housing Design, Initial design

This was the initial design for the housing. It was later redesigned and built, once the manufacturing
tolerances of the 3-D printer were empirically discovered so that there was better fit with the mating
components.

20

Images for Section 2.5

00| x
x| |0
RE
X's move f,w—__‘\%
| g
0] 0] x 00| x 00| x
x| x[0 x| |0 X
X —Ix[x X X

00| x 00| x 0| 0| x 00| x 0/0|x 0|0 x
x| x| 0 x|x|0 x| 0 % 0 x| 00 X 0
0 X 0] x x| x 0] x| x X X x| 0| x

Figure 2.5-1: Minimax Implementation for Tic-Tac-Toe [1]

1 2 3 4 5 6 T

Figure 2.5-2: Optimal Play Position based on testAlgorithm Function

21

a a
Q
a
o .
a
‘b /\
a
O
Implemented Algorithm Decision Tree Minimax Decision Tree

Figure 2.5-3: Decision Tree Comparison

22

Images for Section 2.6

Emotion Score

—

0-177

>1777

Figure 2.6-2: Bewildered Expression for Invalid Camera Images

23

Table 2: Emotion Score Conversion Criteria

Play Position Point Evaluation
(Maximum # of consecutive chips)

Emotion Score

Oorl 1
2 10
3 100
4 or greater 1000

Bdr Ve e Took Destop Wiedow Wep

Fie [Ve n Ton Omtmp Wedss b

o e
b NRaRaL@inBled T T DoWs k ALEae L alnaieg

Figure 2.6-1: Computer Interface

(Top Left: Machine Vision Live Preview; Bottom Left: Game Animation ; Right: Facial Expression)

24

Code:

The code was implemented in Matlab to run the algorithms, control the epson and control the gripper. The
code has been explained via discussing the respective algorithm in the Design and Implementation
Section.

The full code can be found on the group member’s GitHub page at this link:

https://github.com/naudzghebre/connect4Bot

25

https://github.com/naudzghebre/connect4Bot

